Proof Without Words: The Pythagorean Theorem
with Equilateral Triangles

Claudi Alsina (claudio.alsina@upc.edu), Universitat Politècnica de Catalunya, 08028 Barcelona, Spain, and Roger B. Nelsen (nelsen@lclark.edu), Lewis & Clark College, Portland, OR 97219

The Pythagorean theorem (Proposition I.47 in Euclid’s Elements) is usually illustrated with squares drawn on the sides of a right triangle. However, as a consequence of Proposition VI.31 in the Elements, any set of three similar figures may be used, such as equilateral triangles as shown at the right. Let T denote the area of a right triangle with legs a and b, and hypotenuse c; let T_a, T_b, and T_c denote the areas of equilateral triangles drawn externally on sides a, b, and c; and let P denote the area of a parallelogram with sides a and b and 30° and 150° angles. Then we have

Lemma. $T = P$.

Proof.

\[T_a + 2T = T_a + 2P \implies T = P. \]

Theorem. $T_c = T_a + T_b$.

Proof.

\[T_c + 3T = T_a + T_b + 3P \implies T_c = T_a + T_b. \]

Summary. A visual proof of a modified Pythagorean theorem, showing that the area of an equilateral triangle constructed on the hypotenuse of a right triangle equals the sum of the areas of equilateral triangles constructed on the legs.

http://dx.doi.org/10.4169/college.math.j.43.3.226

MSC: 00A05, 51-01